Title: | QTL Analysis in Diallel Populations |
---|---|
Description: | QTL analysis of diploid and autotetraploid diallel populations. Phenotypes are regressed on genotype probabilities, and the regression coefficients are random effects. |
Authors: | Jeffrey B. Endelman and Rodrigo R. Amadeu |
Maintainer: | Jeffrey Endelman <[email protected]> |
License: | GPL-3 + file LICENSE |
Version: | 1.10 |
Built: | 2024-12-12 05:20:27 UTC |
Source: | https://github.com/jendelman/diaQTL |
Bayesian Credible Interval for QTL position
BayesCI(scan1_data, data, chrom, CI.prob = 0.9)
BayesCI(scan1_data, data, chrom, CI.prob = 0.9)
scan1_data |
data frame output from scan1 |
data |
variable of class |
chrom |
chromosome |
CI.prob |
probability for the credible interval |
Parameter CI.prob
sets the probability for the Bayesian credible interval (e.g., 0.90, 0.95)
using the profile likelihood (posterior mean).
subset of scan1_data with markers in the CI
## Not run: BayesCI(scan1_example, diallel_example, chrom="10", CI.prob=0.9) ## End(Not run)
## Not run: BayesCI(scan1_example, diallel_example, chrom="10", CI.prob=0.9) ## End(Not run)
Generates diaQTL input files from the output of calc_genoprob or calc_genoprob_error in the MAPpoly package. The argument data
is a list containing the results for each linkage group. Map distances are rounded to 0.01 cM, and genotype probabilties are rounded to three decimal places.
convert_mappoly(data, ploidy, outstem = "")
convert_mappoly(data, ploidy, outstem = "")
data |
list of variables of class mappoly.genoprob (one for each linkage group) |
ploidy |
Either 2 or 4 |
outstem |
prefix for the pedigree and genotype files for diaQTL |
## Not run: # see MAPpoly tutorial for details on its functions MAP <- list(lg1, lg2, lg3) #list of linkage groups genoprob <- vector("list", 3) #if 3 linkage groups for(i in 1:length(genoprob)) genoprob[[i]] <- mappoly::calc_genoprob_error(input.map = MAP[[i]], error = 0.05) convert_mappoly(genoprob, ploidy=4) ## End(Not run)
## Not run: # see MAPpoly tutorial for details on its functions MAP <- list(lg1, lg2, lg3) #list of linkage groups genoprob <- vector("list", 3) #if 3 linkage groups for(i in 1:length(genoprob)) genoprob[[i]] <- mappoly::calc_genoprob_error(input.map = MAP[[i]], error = 0.05) convert_mappoly(genoprob, ploidy=4) ## End(Not run)
Generate diaQTL input files from 'onemap_progeny_haplotypes' object class of OneMap R package (version >2.2.0)
convert_onemap(data, digits = 4, outstem = "")
convert_onemap(data, digits = 4, outstem = "")
data |
onemap_progeny_haplotypes object class |
digits |
how many rounding digits for the probabilities output (default=4) |
outstem |
prefix for the pedigree and genotype files for diaQTL |
## Not run: map <- list(LG1_final, LG2_final) progeny_haplot <- onemap::progeny_haplotypes(map, most_likely = FALSE, ind = "all") convert_onemap(progeny_haplot) ## End(Not run)
## Not run: map <- list(LG1_final, LG2_final) progeny_haplot <- onemap::progeny_haplotypes(map, most_likely = FALSE, ind = "all") convert_onemap(progeny_haplot) ## End(Not run)
Create diaQTL input files from PolyOrigin output
convert_polyorigin( filename, mapfile = NULL, remove.outliers = TRUE, outstem = "" )
convert_polyorigin( filename, mapfile = NULL, remove.outliers = TRUE, outstem = "" )
filename |
Name of polyancestry file |
mapfile |
Optional name of CSV file containing the physical map (marker, chrom, bp) |
remove.outliers |
Should offspring flagged as outliers be removed (default is TRUE) |
outstem |
prefix for output filenames |
Creates the pedigree (diaQTL_pedfile.csv) and genotype (diaQTL_genofile.csv) input files needed for read_data
from the polyancestry output file generated by the PolyOrigin software. PolyOrigin outputs a genetic map in cM. To add a physical map in bp, use the option mapfile
. The input file needed for phased_parents
(diaQTL_parents.csv) is also created.
Generate diaQTL input files from RABBIT MagicReconstruct
convert_rabbit(rabbit.outfile, ped.file, outstem)
convert_rabbit(rabbit.outfile, ped.file, outstem)
rabbit.outfile |
name of RABBIT output file |
ped.file |
name of RABBIT pedigree file |
outstem |
prefix for the pedigree and genotype files for diaQTL |
S4 class with genotype and phenotype data
ploidy
Either 2 or 4
input
matrix of character strings from the genotype input file
Xa
list of matrices with the expected haplotype dosage (rows) for each parental origin genotype (columns)
dominance
Maximum dosage stored in slot geno
. Integer 1-4 indicating 1 = additive, 2 = digenic dominance, 3 = trigenic dominance, 4 = quadrigenic dominance.
X.GCA
Incidence matrix for GCA effects
map
data frame with marker,chrom, position (cM and/or bp) and bin
geno
list of length equal to the number of marker bins. Each element is a list of length dominance
. The elements in the nested list are sparse matrices with dimensions (id x effects), containing the dosage for each effect.
A
list with the additive relationship matrix for each chromosome
pheno
data frame of phenotypes
X
incidence matrix for fixed effects
Z
incidence matrix for individuals
S4 class with genotype data
ploidy
Either 2 or 4
input
matrix of character strings from the genotype input file, one row per bin
Xa
list of matrices (one for each offspring) with the expected haplotype dosage (rows) for each parental origin genotype (columns)
dominance
Maximum dosage stored in slot geno
. Integer 1-4 indicating 1 = additive, 2 = digenic dominance, 3 = trigenic dominance, 4 = quadrigenic dominance.
X.GCA
Incidence matrix for GCA effects
map
data frame with marker,chrom, position (cM and/or bp) and bin
geno
list of length equal to the number of marker bins. Each element is a list of length dominance
. The elements in the nested list are sparse matrices with dimensions (id x effects), containing the dosage for each effect.
A
list with the additive relationship matrix for each chromosome
delta DIC thresholds for scan1
DIC_thresh(genome.size, num.parents, ploidy, alpha = 0.05, dominance = 1)
DIC_thresh(genome.size, num.parents, ploidy, alpha = 0.05, dominance = 1)
genome.size |
Genome size in Morgans (not centiMorgans) |
num.parents |
Number of parents (2 to 10) |
ploidy |
2 or 4 |
alpha |
significance level (0.01, 0.05, 0.10, or 0.20) |
dominance |
1 (additive) or 2 (digenic dominance) |
Thresholds to control the genome-wide false positive rate at alpha
were determined for half-diallel mating designs with up to 10 parents.
-deltaDIC threshold
## Not run: DIC_thresh(genome.size=10, num.parents=4, ploidy=4, dominance=1, alpha=0.05) ## End(Not run)
## Not run: DIC_thresh(genome.size=10, num.parents=4, ploidy=4, dominance=1, alpha=0.05) ## End(Not run)
Plot the frequency of individuals with diplotype dosage above a threshold
diplo_freq(data, diplotypes, dosage, position, chrom = NULL)
diplo_freq(data, diplotypes, dosage, position, chrom = NULL)
data |
Variable inheriting from class |
diplotypes |
Names of diplotypes |
dosage |
Dosage threshold |
position |
Either "cM" or "bp" for plotting |
chrom |
Names of chromosomes (default is all) |
Useful for visualizing selection in selfed populations.
List containing
Data frame with the map and frequency
ggplot object
Dosage of parental diplotypes
diplo_get(data, marker = NULL, id = NULL)
diplo_get(data, marker = NULL, id = NULL)
data |
Variable inheriting from class |
marker |
Name of marker |
id |
Name of individual |
Function can be used to get parental diplotype dosage estimates at a single marker for all individuals (in which case id
should be NULL
) or for a single individual for all markers (in which case marker
should be NULL
)
Matrix of (id or markers) x parental diplotypes
## Not run: diplo_example = diplo_get(data = diallel_example, marker = "solcap_snp_c2_25522") diplo_example = diplo_get(data = diallel_example, id = "W15263-8R") ## End(Not run)
## Not run: diplo_example = diplo_get(data = diallel_example, marker = "solcap_snp_c2_25522") diplo_example = diplo_get(data = diallel_example, id = "W15263-8R") ## End(Not run)
Character vector with the 100 possible tetraploid genotypes for a F1 population. Maternal haplotypes are denoted 1,2,3,4 and paternal haplotypes 5,6,7,8.
data(F1codes)
data(F1codes)
character vector
Visualize haplotype switches for fine mapping
fine_map(data, haplotype, interval, trait = NULL, marker = NULL)
fine_map(data, haplotype, interval, trait = NULL, marker = NULL)
data |
Variable inheriting from class |
haplotype |
Name of parental haplotype |
interval |
2-vector with marker names |
trait |
Name of trait to plot (optional) |
marker |
Optional, marker to indicate with dashed line |
Function returns graphic for all individuals with a haplotype switch (defined as change in dosage from 0 to 1 or vice versa) for
haplotype
within interval
. If trait
is included, the trait values for each individual are displayed on the right side. The function requires map positions in bp to be included in data
.
ggplot2 variable
## Not run: fine_map(data = diallel_example, haplotype = "W6511-1R.2", interval = c("solcap_snp_c2_40766","solcap_snp_c1_15225")) fine_map(data = diallel_example, haplotype = "W6511-1R.2", interval = c("solcap_snp_c2_40766","solcap_snp_c1_15225"), marker = "solcap_snp_c2_25522") ## End(Not run)
## Not run: fine_map(data = diallel_example, haplotype = "W6511-1R.2", interval = c("solcap_snp_c2_40766","solcap_snp_c1_15225")) fine_map(data = diallel_example, haplotype = "W6511-1R.2", interval = c("solcap_snp_c2_40766","solcap_snp_c1_15225"), marker = "solcap_snp_c2_25522") ## End(Not run)
Fit multiple QTL model
fitQTL( data, trait, qtl, epistasis = NULL, polygenic = FALSE, params = list(burnIn = 100, nIter = 5000), CI.prob = 0.9 )
fitQTL( data, trait, qtl, epistasis = NULL, polygenic = FALSE, params = list(burnIn = 100, nIter = 5000), CI.prob = 0.9 )
data |
variable of class |
trait |
name of trait |
qtl |
data frame, see Details |
epistasis |
optional data frame, see Details |
polygenic |
TRUE/FALSE whether to include additive polygenic effect |
params |
list containing the number of burn-in (burnIn) and total iterations (nIter) |
CI.prob |
probability for Bayesian credible interval |
Argument qtl
is a data frame with columns marker
and dominance
to specify the marker name and highest order effect (1 = additive, 2 = digenic dominance,
3 = trigenic dominance, 4 = quadrigenic dominance). All effects up to the value in dominance
are included. Optional argument epistasis
is a data frame with columns marker1
and
marker2
, where each row specifies an additive x additive epistatic interaction.
The number of burn-in and total iterations in params
can be estimated using
set_params
. Parameter CI.prob
sets the probability (e.g., 0.90, 0.95)
for the Bayesian credible interval for the estimated effects (to disable plotting of the CI,
use CI.prob=NULL
).
List containing
DIC relative to model with GCA but no QTL effects
residuals
matrix with proportion of variance for the effects
list with two matrices, additive
and digenic
, with markers on the rows and effects on the columns
list of ggplot objects, one for each marker, containing elements additive
and digenic
. The digenic plot has digenic effects above the diagonal and the sum of additive and digenic effects below the diagonal.
## Not run: ## getting minimum burnIn and nIter for one qtl set_params(data = diallel_example, trait = "tuber_shape", q = 0.05, r = 0.025, qtl = data.frame(marker="solcap_snp_c2_25522",dominance=2), polygenic = TRUE) ## additive effects fit1 <- fitQTL(data = diallel_example, trait = "tuber_shape", params = list(burnIn=100,nIter=5000), qtl = data.frame(marker="solcap_snp_c2_25522",dominance=1), CI.prob = 0.9) ## additive + digenic dominance effects fit2 <- fitQTL(data = diallel_example, trait = "tuber_shape", params = list(burnIn=100,nIter=5000), qtl = data.frame(marker="solcap_snp_c2_25522",dominance=2), CI.prob=0.9) ## getting minimum burnIn and nIter for two qtl with epistasis set_params(data = diallel_example, trait = "tuber_shape", q = 0.05, r = 0.025, qtl = data.frame(marker=c("PotVar0099535","solcap_snp_c2_25522"), dominance=c(2,1)), epistasis = data.frame(marker1="solcap_snp_c2_25522",marker2="PotVar0099535"), polygenic = TRUE) ## additive + digenic dominance effects for both QTL fit3 <- fitQTL(data = diallel_example, trait = "tuber_shape", params = list(burnIn=100,nIter=5000), qtl = data.frame(marker=c("PotVar0099535","solcap_snp_c2_25522"), dominance=c(2,2)), polygenic = TRUE, CI.prob = 0.9) ## additive + digenic dominance effects for both QTL + their epistatic effects fit4 <- fitQTL(data = diallel_example, trait = "tuber_shape", params = list(burnIn=100,nIter=5000), qtl = data.frame(marker=c("PotVar0099535","solcap_snp_c2_25522"), dominance=c(2,2)), epistasis = data.frame(marker1="solcap_snp_c2_25522",marker2="PotVar0099535"), polygenic = TRUE, CI.prob = 0.9) ## additive + digenic dominance effects for three QTL + all their epistatic effects fit5 <- fitQTL(data = diallel_example, trait = "tuber_shape", params = list(burnIn=100,nIter=5000), qtl = data.frame(marker=c("PotVar0099535", "solcap_snp_c1_6427", "solcap_snp_c2_25522"), dominance=c(2,2,2)), epistasis = data.frame(marker1=c("solcap_snp_c2_25522", "solcap_snp_c2_25522", "PotVar0099535"), marker2=c("PotVar0099535", "solcap_snp_c1_6427", "solcap_snp_c1_6427")), polygenic = TRUE, CI.prob = 0.9) ## End(Not run)
## Not run: ## getting minimum burnIn and nIter for one qtl set_params(data = diallel_example, trait = "tuber_shape", q = 0.05, r = 0.025, qtl = data.frame(marker="solcap_snp_c2_25522",dominance=2), polygenic = TRUE) ## additive effects fit1 <- fitQTL(data = diallel_example, trait = "tuber_shape", params = list(burnIn=100,nIter=5000), qtl = data.frame(marker="solcap_snp_c2_25522",dominance=1), CI.prob = 0.9) ## additive + digenic dominance effects fit2 <- fitQTL(data = diallel_example, trait = "tuber_shape", params = list(burnIn=100,nIter=5000), qtl = data.frame(marker="solcap_snp_c2_25522",dominance=2), CI.prob=0.9) ## getting minimum burnIn and nIter for two qtl with epistasis set_params(data = diallel_example, trait = "tuber_shape", q = 0.05, r = 0.025, qtl = data.frame(marker=c("PotVar0099535","solcap_snp_c2_25522"), dominance=c(2,1)), epistasis = data.frame(marker1="solcap_snp_c2_25522",marker2="PotVar0099535"), polygenic = TRUE) ## additive + digenic dominance effects for both QTL fit3 <- fitQTL(data = diallel_example, trait = "tuber_shape", params = list(burnIn=100,nIter=5000), qtl = data.frame(marker=c("PotVar0099535","solcap_snp_c2_25522"), dominance=c(2,2)), polygenic = TRUE, CI.prob = 0.9) ## additive + digenic dominance effects for both QTL + their epistatic effects fit4 <- fitQTL(data = diallel_example, trait = "tuber_shape", params = list(burnIn=100,nIter=5000), qtl = data.frame(marker=c("PotVar0099535","solcap_snp_c2_25522"), dominance=c(2,2)), epistasis = data.frame(marker1="solcap_snp_c2_25522",marker2="PotVar0099535"), polygenic = TRUE, CI.prob = 0.9) ## additive + digenic dominance effects for three QTL + all their epistatic effects fit5 <- fitQTL(data = diallel_example, trait = "tuber_shape", params = list(burnIn=100,nIter=5000), qtl = data.frame(marker=c("PotVar0099535", "solcap_snp_c1_6427", "solcap_snp_c2_25522"), dominance=c(2,2,2)), epistasis = data.frame(marker1=c("solcap_snp_c2_25522", "solcap_snp_c2_25522", "PotVar0099535"), marker2=c("PotVar0099535", "solcap_snp_c1_6427", "solcap_snp_c1_6427")), polygenic = TRUE, CI.prob = 0.9) ## End(Not run)
Get map summary from diallel_geno object
get_map(data, summary = TRUE)
get_map(data, summary = TRUE)
data |
Variable inheriting from class |
summary |
logical, if TRUE (default) returns total sizes per chromosome, if FALSE returns the map |
data frame with map summary or the map
## Not run: get_map(diallel_example) ## End(Not run)
## Not run: get_map(diallel_example) ## End(Not run)
Cluster parental haplotypes
haplo_cluster(filename, marker, haplotypes = NULL)
haplo_cluster(filename, marker, haplotypes = NULL)
filename |
Name of diaQTL_parents input file |
marker |
Either target marker or marker interval (see Details). |
haplotypes |
Vector of haplotype names (default is all) |
The argument marker
can be either a single marker or vector of two markers.
If a single marker, the function finds the smallest interval containing that marker such that
the phased SNP haplotypes are all unique. If two markers are provided, that interval is used.
Clustering utilizes hclust(method="average"). See also phased_parents
for an additional visualization tool.
List containing
Data frame of haplotypes
Dendrogram
Plots the frequency of individuals with haplotype dosage above a threshold
haplo_freq( data, haplotypes, dosage, id = NULL, position = "cM", chrom = NULL, markers = NULL )
haplo_freq( data, haplotypes, dosage, id = NULL, position = "cM", chrom = NULL, markers = NULL )
data |
Variable inheriting from class |
haplotypes |
Names of haplotypes |
dosage |
Dosage threshold |
id |
Vector of id names (default is entire population) |
position |
Either "cM" (default) or "bp" for plotting |
chrom |
Names of chromosomes (default is all) |
markers |
Optional, markers to indicate with dashed line. Only available when plotting a single chromosome. |
Useful for visualizing selection in selfed populations. For multiple chromosomes, each haplotype is shown in its own panel using facet_wrap. For one chromosome, the haplotypes are shown on the same set of axes.
List containing
Data frame with the map and frequency
ggplot object
Dosage of parental haplotypes
haplo_get(data, marker = NULL, id = NULL)
haplo_get(data, marker = NULL, id = NULL)
data |
Variable inheriting from class |
marker |
Name of marker |
id |
Name of individual |
Function can be used to get parental haplotype dosage estimates at a single marker for all individuals (in which case id
should be NULL
) or for a single individual for all markers (in which case marker
should be NULL
)
Matrix of (id or markers) x parental haplotypes
## Not run: haplo_example = haplo_get(data = diallel_example, marker = "solcap_snp_c2_25522") haplo_example = haplo_get(data = diallel_example, id = "W15263-8R") ## End(Not run)
## Not run: haplo_example = haplo_get(data = diallel_example, marker = "solcap_snp_c2_25522") haplo_example = haplo_get(data = diallel_example, id = "W15263-8R") ## End(Not run)
Match up parental haplotypes
haplo_match(file1, file2, chrom)
haplo_match(file1, file2, chrom)
file1 |
name of CSV phased parent file |
file2 |
name of CSV phased parent file |
chrom |
chromosome |
Designed to match up parental haplotypes between two phased parent files based on genetic distance. In the plots, the haplotypes in file1 are numbered 1-4, and those in file2 are numbered 5-8.
Data frame with results
Plot parental haplotype dosages across the chromosome for one individual
haplo_plot(data, id, chrom, position = "cM", markers = NULL)
haplo_plot(data, id, chrom, position = "cM", markers = NULL)
data |
Variable inheriting from class |
id |
Name of individual |
chrom |
Name of chromosome |
position |
Either "cM" (default) or "bp" |
markers |
Optional, markers to indicate with dashed line |
For "cM" plotting, only one marker per bin is displayed. For "bp" plotting, all markers are included.
ggplot object
## Not run: haplo_plot(data = diallel_example, id = "W15263-8R", chrom = 10) haplo_plot(data = diallel_example, id = "W15263-8R", chrom = 10, marker = "solcap_snp_c2_25522") ## End(Not run)
## Not run: haplo_plot(data = diallel_example, id = "W15263-8R", chrom = 10) haplo_plot(data = diallel_example, id = "W15263-8R", chrom = 10, marker = "solcap_snp_c2_25522") ## End(Not run)
Calculates realized relationship matrices from founder genotype probabilities
IBDmat( data, dominance = 1, epistasis = FALSE, spacing = 1, chrom = NULL, n.core = 1 )
IBDmat( data, dominance = 1, epistasis = FALSE, spacing = 1, chrom = NULL, n.core = 1 )
data |
Variable inheriting from class |
dominance |
One of 1,2,3,4 |
epistasis |
TRUE/FALSE |
spacing |
spacing between marker bins, in cM |
chrom |
Optional, vector of chromosome names to include |
n.core |
number of cores for parallel execution |
Parameter dominance
refers to 1 = additive, 2 = digenic, 3 = trigenic, 4 = quadrigenic. Can specify to use only a subset of the chromosomes (by default, all chromosomes are used). If epistasis
is TRUE, then dominance
must be 1 (additive x additive epistasis). Only pairs of markers on different chromosomes are used for epistasis.
Relationship matrix
## Not run: IBD_example = IBDmat(data = diallel_example, dominance=1) #additive IBD_example = IBDmat(data = diallel_example, dominance=2) #digenic dominance IBD_example = IBDmat(data = diallel_example, epistasis=TRUE) #additive x additive epistasis ## End(Not run)
## Not run: IBD_example = IBDmat(data = diallel_example, dominance=1) #additive IBD_example = IBDmat(data = diallel_example, dominance=2) #digenic dominance IBD_example = IBDmat(data = diallel_example, epistasis=TRUE) #additive x additive epistasis ## End(Not run)
Visualize phased SNPs of parents
phased_parents(filename, interval, markers, parents)
phased_parents(filename, interval, markers, parents)
filename |
Name of CSV input file |
interval |
Vector of length 2 with the first and last marker names |
markers |
Vector of marker names to plot |
parents |
Vector of parent names to plot |
The solid circles in the figure represent the allele counted by dosage.
ggplot2 object
Reads genotype, pedigree, and phenotype data files
read_data( genofile, ploidy = 4, pedfile, phenofile = NULL, fixed = NULL, bin.markers = TRUE, dominance = NULL, n.core = 1 )
read_data( genofile, ploidy = 4, pedfile, phenofile = NULL, fixed = NULL, bin.markers = TRUE, dominance = NULL, n.core = 1 )
genofile |
File with map and genotype probabilities |
ploidy |
Either 2 or 4 |
pedfile |
File with pedigree data (id,parent1,parent2) |
phenofile |
File with phenotype data (optional) |
fixed |
If there are fixed effects, this is a character vector of "factor" or "numeric" |
bin.markers |
TRUE/FALSE whether to bin markers with the same cM position |
dominance |
Maximum value of dominance that will be used for analysis. Default = ploidy. |
n.core |
Number of cores for parallel execution |
The first 3 columns of the genotype file should be the genetic map (labeled marker, chrom, cM), and a fourth column for a reference genome position (labeled bp) can also be included. The map is followed by the members of the population. The genotype data for each marker x individual combination is a string with the format "state|state|state...=>prob|prob|prob...", where "state" refers to the genotype state and "prob" is the genotype probability in decimal format. Only states with nonzero probabilities need to be listed. The encoding for the states in tetraploids is described in the documentation for the F1codes and S1codes datasets that come with the package. For diploids, there are 4 F1 genotype codes, 1,2,3,4, which correspond to haplotype combinations 1-3,1-4,2-3,2-4, respectively; the S1 genotype codes 1,2,3 correspond to 1-1,1-2,2-2, respectively.
For the phenotype file, first column is id, followed by traits, and then any fixed effects. Pass a character vector for the function argument "fixed" to specify whether each effect is a factor or numeric covariate. The number of traits is deduced based on the number of columns. Binary traits must be coded N/Y and are converted to 0/1 internally for analysis by probit regression. Missing data in the phenotype file should be coded as NA.
The parameter dominance
specifies the maximum value of dominance that can be used in subsequent analysis: 1 = additive, 2 = digenic dominance, 3 = trigenic dominance, 4 = quadrigenic dominance. The default is dominance = ploidy, which allows the full range of dominance models in functions such as scan1
and fitQTL
, but this requires the most RAM. Output files from the BGLR package are stored in a folder named 'tmp' in the current directory.
Variable of class diallel_geno
if phenofile is NULL, otherwise diallel_geno_pheno
## Not run: ## Get the location of raw csv files examples genocsv = system.file( "vignette_data", "potato_geno.csv", package = "diaQTL" ) pedcsv = system.file( "vignette_data", "potato_ped.csv", package = "diaQTL" ) phenocsv = system.file( "vignette_data", "potato_pheno.csv", package = "diaQTL" ) ## Check their location in the system print(genocsv) print(pedcsv) print(phenocsv) ## Load them in R diallel_example <- read_data(genofile = genocsv, ploidy = 4, pedfile = pedcsv, phenofile = phenocsv) ## End(Not run)
## Not run: ## Get the location of raw csv files examples genocsv = system.file( "vignette_data", "potato_geno.csv", package = "diaQTL" ) pedcsv = system.file( "vignette_data", "potato_ped.csv", package = "diaQTL" ) phenocsv = system.file( "vignette_data", "potato_pheno.csv", package = "diaQTL" ) ## Check their location in the system print(genocsv) print(pedcsv) print(phenocsv) ## Load them in R diallel_example <- read_data(genofile = genocsv, ploidy = 4, pedfile = pedcsv, phenofile = phenocsv) ## End(Not run)
Character vector with the 35 possible tetraploid genotypes for a S1 population. Haplotypes are denoted 1,2,3,4.
data(S1codes)
data(S1codes)
character vector
Performs a linear regression for each position in the map.
scan1( data, trait, params = list(burnIn = 100, nIter = 1000), dominance = 1, covariate = NULL, chrom = NULL, n.core = 1 )
scan1( data, trait, params = list(burnIn = 100, nIter = 1000), dominance = 1, covariate = NULL, chrom = NULL, n.core = 1 )
data |
variable of class |
trait |
name of trait |
params |
list containing burnIn and nIter |
dominance |
maximum dominance for the scan, see Details |
covariate |
optional, to include markers as covariates. See Details |
chrom |
names of chromosomes to scan (default is all) |
n.core |
number of cores for parallel execution |
Parameter dominance
has possible values of 1 = additive, 2 = digenic dominance, 3 = trigenic dominance, 4 = quadrigenic dominance. MCMC params
can be estimated using set_params
. Optional argument covariate
is used to include other markers in the model during the scan, which can improve statistical power with multiple QTL. It is a data frame with three columns: marker = name of the marker, dominance = 1 to 4, and epistasis = TRUE/FALSE. Function returns deltaDIC = DIC for the QTL model relative to null model with only GCA effects for the parents, as well as LL = posterior mean of the log-likelihood, which is used by BayesCI
.
Data frame containing the map, LL, and deltaDIC.
## Not run: ## getting minimum burnIn and nIter set_params(data = diallel_example, trait = "tuber_shape") scan1_example <- scan1(data = diallel_example, chrom = "10", trait = "tuber_shape", params = list(burnIn=60,nIter=600)) ## End(Not run)
## Not run: ## getting minimum burnIn and nIter set_params(data = diallel_example, trait = "tuber_shape") scan1_example <- scan1(data = diallel_example, chrom = "10", trait = "tuber_shape", params = list(burnIn=60,nIter=600)) ## End(Not run)
Permutation test for scan1
scan1_permute( data, trait, params, n.permute = 1000, chrom = NULL, dominance = 1, covariate = NULL, n.core = 1 )
scan1_permute( data, trait, params, n.permute = 1000, chrom = NULL, dominance = 1, covariate = NULL, n.core = 1 )
data |
Variable of class |
trait |
Name of trait |
params |
List containing burnIn and nIter |
n.permute |
Number of permutations |
chrom |
Names of chromosomes to scan (default is all) |
dominance |
Dominance degree (1-4) |
covariate |
optional, to include markers as covariates. See Details. |
n.core |
Number of cores for parallel execution |
Data frame with maximum LOD and minimum deltaDIC for each iteration
## Not run: set_params(data = diallel_example, trait = "tuber_shape") ans1_permut <- scan1_permute(data = diallel_example, chrom = 10, trait = "tuber_shape", params = list(burnIn=60,nIter=600), n.permute = 100) ## computing permutation threshold for alpha=0.05 quantile(ans1_permut$min_deltaDIC, 0.05) ## End(Not run)
## Not run: set_params(data = diallel_example, trait = "tuber_shape") ans1_permut <- scan1_permute(data = diallel_example, chrom = 10, trait = "tuber_shape", params = list(burnIn=60,nIter=600), n.permute = 100) ## computing permutation threshold for alpha=0.05 quantile(ans1_permut$min_deltaDIC, 0.05) ## End(Not run)
Summary of scan1 result
scan1_summary(scan1_data, thresh = NULL, chrom = NULL, position = "cM")
scan1_summary(scan1_data, thresh = NULL, chrom = NULL, position = "cM")
scan1_data |
output from scan1 |
thresh |
optional -deltaDIC threshold for plotting |
chrom |
optional, subset of chromosomes to plot |
position |
Either "cM" (default) or "bp" |
Plots the "score" (-deltaDIC) for each marker vs. genome position. The thresh
argument should be a positive number.
List containing
data frame of markers with the highest score on each chromosome
ggplot object
## Not run: scan1_summary( scan1_example ) scan1_summary( scan1_example, chrom = "10" ) scan1_summary( scan1_example, chrom = c( "10", "12" ) ) scan1_summary( scan1_example, chrom = "10", thresh = 20) ## End(Not run)
## Not run: scan1_summary( scan1_example ) scan1_summary( scan1_example, chrom = "10" ) scan1_summary( scan1_example, chrom = c( "10", "12" ) ) scan1_summary( scan1_example, chrom = "10", thresh = 20) ## End(Not run)
Determine number of iterations for MCMC
set_params( data, trait, qtl = NULL, epistasis = NULL, polygenic = FALSE, q = 0.5, r = 0.1, nIter = 2000 )
set_params( data, trait, qtl = NULL, epistasis = NULL, polygenic = FALSE, q = 0.5, r = 0.1, nIter = 2000 )
data |
variable of class |
trait |
name of trait |
qtl |
optional data frame, see Examples |
epistasis |
optional data frame, see Example |
polygenic |
TRUE/FALSE whether to include additive polygenic effect |
q |
quantile to estimate |
r |
tolerance for quantile |
nIter |
number of iterations |
Determines the burn-in and total number of iterations using the Raftery and Lewis diagnostic from
R package coda
, based on a 95% probability that the estimate for quantile q
of the
additive genetic variance is within the interval (q-r,q+r)
. If marker=NULL
(default),
the first marker of each chromosome is analyzed, and the largest value across this set is returned.
Parameter dominance
specifies which genetic model (1 = additive, 2 = digenic dominance,
3 = trigenic dominance, 4 = quadrigenic dominance) to use when determining the number of iterations,
but this parameter must still be specified when calling functions such as scan1
or
fitQTL
. The default values of q=0.5 and r=0.1 are recommended for scan1
based on the idea of estimating the posterior mean. For estimating the 90% Bayesian CI with
fitQTL
, suggested values are q=0.05, r=0.025. Parameter nIter
sets the
number of iterations used to apply the Raftery and Lewis diagnostic; the default value is 2000,
and if a larger number is needed, an error will be generated with this information.
matrix showing the number of burn-in and total iterations for the genetic variances in the model
## Not run: # Parameters for scan1 par1 <- set_params(data = diallel_example, trait = "tuber_shape", q=0.5, r=0.1) # Parameters for fitQTL (specify the position) set_params(data = diallel_example, trait = "tuber_shape", q=0.05, r=0.025, qtl=data.frame(marker="solcap_snp_c2_25522",dominance=2)) # Parameters for fitQTL (specify the position) with polygenic effects set_params(data = diallel_example, trait = "tuber_shape", q=0.05, r=0.025, qtl=data.frame(marker="solcap_snp_c2_25522",dominance=2), polygenic=TRUE) # Parameters for fitQTL with 2 QTLs set_params(data = diallel_example, trait = "tuber_shape", q=0.05, r=0.025, qtl=data.frame(marker=c("solcap_snp_c2_25522","solcap_snp_c2_14750"),dominance=c(2,1))) # Parameters for fitQTL with epistasis set_params(data = diallel_example, trait = "tuber_shape", q=0.05, r=0.025, epistasis = data.frame(marker1="solcap_snp_c2_25522",marker2="solcap_snp_c2_14750"), qtl=data.frame(marker=c("solcap_snp_c2_25522","solcap_snp_c2_14750"),dominance=c(2,1))) ## End(Not run)
## Not run: # Parameters for scan1 par1 <- set_params(data = diallel_example, trait = "tuber_shape", q=0.5, r=0.1) # Parameters for fitQTL (specify the position) set_params(data = diallel_example, trait = "tuber_shape", q=0.05, r=0.025, qtl=data.frame(marker="solcap_snp_c2_25522",dominance=2)) # Parameters for fitQTL (specify the position) with polygenic effects set_params(data = diallel_example, trait = "tuber_shape", q=0.05, r=0.025, qtl=data.frame(marker="solcap_snp_c2_25522",dominance=2), polygenic=TRUE) # Parameters for fitQTL with 2 QTLs set_params(data = diallel_example, trait = "tuber_shape", q=0.05, r=0.025, qtl=data.frame(marker=c("solcap_snp_c2_25522","solcap_snp_c2_14750"),dominance=c(2,1))) # Parameters for fitQTL with epistasis set_params(data = diallel_example, trait = "tuber_shape", q=0.05, r=0.025, epistasis = data.frame(marker1="solcap_snp_c2_25522",marker2="solcap_snp_c2_14750"), qtl=data.frame(marker=c("solcap_snp_c2_25522","solcap_snp_c2_14750"),dominance=c(2,1))) ## End(Not run)